
1

Preliminary Design Specifications

RTCS DQ and RC Control Panel Replacement

March 2, 1993

1.0 Introduction

This manual is intended to provide detailed design specifications for use in the development of a
new DQ console control system. It will also form the basis for the future program as-built
specifications.

Requirements for the DQ console control have been reviewed and a baseline was approved on
September 30, 1992. An implementation has been suggested using Vivisun programmable
buttons, 2 monochrome terminals, and a color console. The initial target platform is a 486 PC,
however the design is not computer specific. The specifications are written with the assumption
that the DQ console control system will reside on a dedicated computer, however it could reside
concurrently on another computer such as the data system computer or one of the display
systems.

1.1 Directory Structure

The system name will be DQ, and files used in system development will be kept under a directory
of that name. Directory DQ will contain source and header files for the main DQ program. A
separate subdirectory will be created under directory DQ to contain files for each child program.
A program subdirectory will have the same name as the child whose files it contains. A special
LIB subdirectory will contain files for functions which are used by more than one of the
programs. A library will be created with those functions.

 1.2 Multi-tasking

In order to allow for independent asynchronous I/O on several different devices, multiple process
will be used. In general, each program will perform only one physical input or output with wait
in its main processing loop. The operating system will be given the responsibility of swapping
from program to program as events occur. Most programs will communicate to each other
through message queues.

1.3 Compilation and Linking

Each program and the library will have a make file in its directory to compile and link it. In
addition the DQ directory will have a special make file to compile and link all the programs which

2

make up the system.

2.0 Procedure Descriptions for DQ Programs

This section contains a description with program design language for each of the DQ programs.

2.1 DQ - DQ Control Console Main Program

The DQ main program will be the driver for the DQ console control system. It will be started up
automatically when the computer is booted assuming a dedicated computer system. It will
initialize all parameters, tables, queues, and shared memory, and will start all the children
programs. It will then wait for a halt signal. When a halt signal is received, it will terminate the
children programs. It will then go through the initialization process again and restart the children
programs and wait. There will be no keyboard input.

DQ start
Initialize parameters, tables, queues, shared memory
Do forever (until computer turned off)

Start children programs in priority order
Wait for halt signal
Kill children programs

Enddo
DQ stop

2.2 BOn - Button Ouput Programs

There will be a button output program for every Vivisun controller card. Each controller card
will control up to 16 Vivisun programmable buttons. When started by DQ a BOn program will
initialize all parameters and tables. It will initialize the appropriate RS-232 serial port and notify
the corresponding BIn program, then enter its main processing loop. The main processing loop
will receive messages from PR. It will be queue suspended until a message is received. A
message will tell BOn which button is to be affected and how. It may tell which one of a
predefined set of messages to write out the port, or it may contain information which needs to be
encoded into the proper button format before being written out the port. BOn will then loop
back to receive the next message. It will only be halted when killed by DQ.

BOn start
Initialize parameters and tables
Initialize RS-232 serial port
If successful

Send port initialized signal to BIn
Else

Do what ??? try several times ???

3

Send error message to DO
??? Go to sleep until killed ???

Endif
Do forever (until killed)

Read message queue
If message with data

Encode data into button format
Else

Identify predefined message
Endif
Write message out serial port

Enddo
BOn stop

2.3 BIn - Button Input Programs

There will be a button input program corresponding to every BOn program. When started by DQ
a BIn program will initialize all parameters and tables. It will wait for a signal from its
corresponding BOn that the RS-232 serial port has been initialized, then enter its main processing
loop. The main processing loop will read an ASCII character from the serial port. It will be I/O
suspended until a character is received. If the character indicates that a button has been pushed,
BIn will send a message to PR telling which button was pushed, otherwise, BIn will ignore it.
BIn will then loop back to read the next character. It will only be halted when killed by DQ.

BIn start
Initialize parameters and tables
Wait for port initialized signal from BOn
Do forever (until killed)

Read ASCII character
If button pushed

Send message to PR
Endif

Enddo
BIn stop

2.4 HB - Heartbeat Interval Timer Program

The heartbeat interval timer program will be set to wake up at a predefined time interval. It may
signal other programs which need to know that the time has elapsed, or set the time in shared
memory. It will be used for such things as to determine if communications have been lost
between the computers, or to know when to poll interfaces such as the countdown clocks.

HB start
Initialize
Do forever (until killed)

Sleep

4

Send message to affected programs
Set time in shared memory

Enddo
HB stop

2.5 SI - Serial Input Program

There will be a serial input program to receive messages from the data processing computer
system. When started by DQ the SI program will initialize all parameters and tables. It will
initialize the appropriate RS-232 serial port and notify SO that it has been initialized, then enter
its main processing loop. The main processing loop will read messages sent by the data
processing computer system an ASCII character at a time from the serial port. It will be I/O
suspended until a character is received. Each time a complete message is identified, it will be sent
to PR. SI will only be halted when killed by DQ.

SI start
Initialize parameters and tables
Initialize serial port
If successful

Send port initialized signal to SO
Else

Do what ??? try several times ???
(Could be a bad interface, but at any rate the system is effectively dead,

and should be halted.)
Endif
Do forever (until killed)

Read serial port
If start of message

Clear message area
Set byte counter to 0
If message in progress

Send error message to DO
Endif
Set message in progress flag

Else if end of message
If message in progress

Send message to PR
Clear message in progress flag

Else
Send error message to DO

Endif
Else (middle of a message)

If message in progress
Increment byte counter
Store message byte

Else
Send error message to DO

5

Endif
Endif

Enddo
SI stop

2.6 SO - Serial Output Program

There will be a serial output program to send messages to the data processing computer. The
messages will essentially say that a particular button was pushed. When started by DQ the SO
program will initialize all parameters and tables. It will wait for a signal from SI that the RS-232
serial port has been initialized, then enter its main processing loop. The main processing loop will
receive messages from PR. It will be queue suspended until a message is received. When a
message is received, it will be written out the serial port. SO will then loop back to receive the
next message. It will only be halted when killed by DQ.

SO start
Initialize parameters and tables
Wait for port initialized signal from SI
Do forever (until killed)

Read message queue
Write message out serial port.

Enddo
SO stop

2.7 EI - Ethernet Input Program

There will be an Ethernet input program to receive messages and data buffers from both the data
processing and graphics display computer systems. When started by DQ the EI program will
initialize all parameters and tables. It will check the Ethernet hardware and communication
protocols and notify EO that connections they are correct. It will establish the Ethernet
connection, then enter its main processing loop. The main processing loop will read messages
from the graphics display computer system or data buffers from the data processing computer
system. It will be Ethernet I/O suspended until a buffer is received. When a buffer is received it
will be identified as a graphics message or a data buffer. Graphics messages will be sent to PR.
Data buffers will be sent to TO. EI will then loop back to receive the next buffer. It will only be
halted when killed by DQ.

EI start
Initialize parameters and tables
Check hardware and protocols
If successful

Send Ethernet OK signal to EO
Else

Do what ??? try several times ???
Send error message to DO
??? Go to sleep until killed ???

6

Endif
Establish Ethernet connection
If unsuccessful

Do what ??? try several times ???
Send error message to DO
??? Go to sleep until killed ???

Endif
Do forever (until killed)

Read Ethernet buffer
If data buffer

Queue to TOn (may have to use shared memory for speed ???)
Else if graphics message

Send message to PR
Endif

Enddo
EI stop

2.8 EO - Ethernet Output Program

There will be an Ethernet output program to send messages to the graphics display system. The
messages will essentially say that a particular button was pushed. When started by DQ the EO
program will initialize all parameters and tables. It will wait for a signal from EI that the Ethernet
hardware and protocols are correct. It will establish the Ethernet connection, then enter its main
processing loop. The main processing loop will receive messages from PR. It will be queue
suspended until a message is received. When a message is received, it will be encoded into an
Ethernet buffer and written out the Ethernet port. EO will then loop back to receive the next
message. It will only be halted when killed by DQ.

EO start
Initialize parameters and tables
Wait for Ethernet OK signal from EI
Establish Ethernet connection
If unsuccessful

Do what ??? try several times ???
Send error message to DO
??? Go to sleep until killed ???

Endif
Do forever (until killed)

Read message queue
Encode message into Ethernet buffer
Write message out Ethernet port

Enddo
EO stop

2.9 RI - Relay Input Program

7

There will be a relay input program to determine the status of the mechanical relays. This
description assumes that the relays will not send an interrupt when they change state, but must be
polled. When started by DQ the RI program will initialize all parameters and tables. It will do
whatever needs to be done to establish communications ??? with the relays, then enter its main
processing loop. The main processing loop will receive wake-up signals from HB. When
signalled it will poll the relays and check to see if any have changed state. If the state is
determined to be changed, the new state will be sent in a message to PR. RI will then loop back
and wait until signalled again. It will only be halted when killed by DQ.

RI start
Initialize parameters and tables
Initialize relay states to -1
Clear state changed counters
Establish relay communication
If successful

Send communication established signal to RO
Else

Do what ??? try several times ???
Send error message to DO
??? Go to sleep until killed ???

Endif
Do forever (until killed)

Wait for wake-up signal from HB
Do for all relays

Read relay state (0 or 1)
If the state changed from the previous state

Increment state changed counter
If state changed counter > noise filter

Save new state
Clear state changed counter
Send new state message to PR

Endif
Endif

Enddo
Enddo
RI stop

2.10 RO - Relay Output Program

There will be a relay output program to send fire signals to the mechanical relays. Some type of
capability must be built in (in hardware???) to save a fire signal which was sent to an unarmed
relay. The capability must also be given to clear a fire signal queued up for an unarmed relay.
When started by DQ the RO program will initialize all parameters and tables. It will wait for a
signal from RI that communication with the relays has been established, then enter its main
processing loop. The main processing loop will receive messages from PR. It will be queue
suspended until a message is received. A message will tell RO which relay is to be fired or
cleared. It will fire or clear the relay then loop back to receive the next message. It will only be

8

halted when killed by DQ.

RO start
Initialize parameters and tables.
Wait for communications established signal from RI
Do forever (until killed)

Read message queue
If fire message

Issue fire command to relay
If relay armed

Command is transmitted
Else

Hardware saves command and it will automatically be
 transmitted when armed

Endif
Else if clear message

Clear fire transmit hardware
Endif

Enddo
RO stop

2.11 TI - Time Input Program

There will be a time input program which will use two time channels on a NASA Data
Receive/Transmit Card. The card will not send an interrupt but must be polled. When started by
DQ the TI program will initialize all parameters and tables. It will initialize the NASA DRT card,
then enter its main processing loop. The main processing loop will receive wake-up signals from
HB. When signalled it will poll the time channel on the NASA DRT card for each mission being
processed. The mission time(s) and GMT will be sent to DO for display. TI will then loop back
and wait until signalled again. It will only be halted when killed by DQ.

TI start
Initialize parameters and tables
Initialize NASA DRT card
If unsuccessful

??? Try several times???
Send error message to DO
??? Go to sleep until killed???

Endif
Do forever (until killed)

Wait for wake-up signal from HB
Read channel 1 for CDT and GMT
If unsuccessful

Send error message to DO
Else

Send GMT time message to DO
Send CDT1 time message to DO

9

Endif
If mission 2 defined

Read channel 2 for CDT
If unsuccessful

Send error message to DO
Else

Send CDT2 time message to DO
Endif

Endif
Enddo
TI stop

2.12 TOn - Terminal Output Programs

There will be a terminal output program to display Ethernet data values on each of the two
monochrome terminals. When started by DQ a TO program will initialize its terminal port then
enter its main processing loop. The main processing loop will receive data buffers from EI. It
will be queue suspended until a data buffer is received. When a data buffer is received, the data
values will be decoded (??? here or in EI or in a program that does no I/O ???) and displayed on
the monitor. TOn will then loop back to receive the next data buffer. It will only be halted when
killed by DQ. (How to do screen writing to avoid flicker? Possible a screen writer like curses.)

TOn start
Initialize parameters and tables
Initialize terminal port
If unsuccessful

???Try several times???
Send error message to DO
Set terminal out flag

Endif
Do forever (until killed)

Read data queue (or shared memory queue ???)
Decode data
Check for errors and send error messages to DO ???
Format output for terminal
Send data to proper terminal

Enddo
TOn stop

2.13 DO - Display Output Program

There will be a display output program to display titles, times, indicators, and messages on the
color display console. Information to display may come from any of the other programs. When
started by DQ the DO program will initialize all parameters and tables. It will establish
communication with the color display console, then enter its main processing loop. The main
processing loop will receive information in a message queue from other programs. It will be

10

queue suspended until a message is received. A message will tell which part of the display to
change and how. It may tell which one of a set of predefined messages to display, or it may
contain information which needs to be encoded into the proper format before being displayed.
DO will then loop back to receive the next message. It will only be halted when killed by DQ.

DO start
Initialize parameters and tables
Establish communications with monitor
If unsuccessful

??? Try several times???
This is DO, so it doesn't help to send it a message to display
Should we log messages then???
Do we want to be able to stop error display or logging??? YES, added a new
button to enable and disable logging ???

Endif
Do forever (until killed)

Read message queue
Determine message type
If invalid message

Display error message
Endif
Format output for display
Display output on monitor

Enddo
DO stop

2.14 PR - Processor Program

There will be a processor program which forms the core of the control console system. The
processor program will basically be a message processor. It will receive messages from the other
programs, determine which programs or computer systems need to know about the messages,
and pass them on. It will also keep track of the state of the system and be responsible for
changes in the system state. Each button will have a response lag time associated with it.
Pushing a button will not cause it to light, but will cause a message to be sent to the processor.
The processor will notify the appropriate system and wait for a response before telling a BO
program to light the button. If the button is pushed again before the response arrives, the second
push will be ignored, unless the response lag time has elapsed. (How do we guarantee that the
console matches the actual status of the other systems in case of message loss? Should this be a
set of programs on the data system???)

The processor will work as an engine for a finite state machine. Each button will have a discrete
number of possible ways it can be lit, and a known number of events that can affect it. For each
lit state and each event, the button can only transition to one other lit state. Identifying all the
possible states is crucial to the processor design. After it processes a message, PR will loop back
to receive the next message. It will only be halted when killed by DQ.

PR start

11

Initialize parameters and tables
Clear response lag time table
Do forever (until killed)

Read message queue
If button pushed message

If response lag time elapsed
Send message to data and/or graphics system or PR queue

???may need to process some itself???
Set response lag time

Endif
Else if heartbeat message

Decrement response lag time table entries
Clear data received indicators

Else if event message
Do for all buttons affected by event

Send light message to BO
Clear response lag time
Modify light state table
Modify system state table when applicable

Enddo
Else if other valid message

Modify system state table
Send any information to DO

Else
Send error message to DO

Endif
Enddo
PR stop

2.15 EL - Error Logging Program (Do you want one??? If so, it should be able to be
inactivated, so a button has been added.)

3.0 Messages and Data

This section lists the possible messages and data to and from the data and graphics systems, along
with the section of the Functional Requirements Specification where each is referenced.

3.1 Possible Event Messages to the Processor

Button X pushed

Raw data recording enabled in premission for mission 1 4.1.1
Raw data recording enabled in premission for mission 2 4.1.1
Raw data recording started for mission 1 4.1.1
Raw data recording started for mission 2 4.1.1

12

Raw data recording stopped for mission 1 4.1.1
Raw data recording stopped for mission 2 4.1.1

Processed data recording enabled in premission for mission 1 4.1.2
Processed data recording enabled in premission for mission 2 4.1.2
Processed data recording started for mission 1 4.1.2
Processed data recording started for mission 2 4.1.2
Processed data recording stopped for mission 1 4.1.2
Processed data recording stopped for mission 2 4.1.2

Mission 1 loaded 4.1.3
Mission 2 loaded 4.1.3
Mission 1 started processing data 4.1.3
Mission 2 started processing data 4.1.3
Mission 1 stopped processing data 4.1.3
Mission 2 stopped processing data 4.1.3

Data system ready 4.2.1
All missions stopped

Graphics system ready 4.2.2
Display X available

Data system active 4.2.5

Graphics system active 4.2.6

Relay control manual, software, or both 4.3.2
Fired relay 4.3.2
Clear fire from unarmed relay 4.3.2
Relay state indicator 4.3.2

Data system initialization of mission 1 started 4.4.1
Data system initialization of mission 2 started 4.4.1
Data system initialization of mission 1 complete 4.4.1
Data system initialization of mission 2 complete 4.4.1

Data source X available 4.5.1
Best for mission 1 available 4.5.1
Best for mission 2 available 4.5.1
Next best for mission 1 available 4.5.1
Next best for mission 2 available 4.5.1
Add source X, best or next best to display 4.5.1
Remove source X, best or next best from display 4.5.1

Alphnumerics for display X frozen 4.5.2.1
Alphanumerics for display X activated 4.5.2.1

13

Manual scaling up for display X activated 4.5.2.2, 4.5.2.3
Manual scaling down for display X activated 4.5.2.2, 4.5.2.3
Manual scaling for display X disabled 4.5.2.2, 4.5.2.3

Data source X available to the RTSP 4.6.1
Data source X not available to the RTSP 4.6.1

Heartbeat time interval elapsed 4.6.2

Data source X selected for processing 4.6.2 - 4.6.5
Data source X not selected for processing 4.6.2 - 4.6.5

Data source X included in best select algorithm 4.6.3
Data source X not included in best select algorithm 4.6.3

Filter initialization for data source X startedi 4.6.4
Filter initialization for data source X completed 4.6.4

Filter for data source X changed to coast 4.6.5
Filter for data source X changed to powered flight 4.6.5

Filter initialization for all mission 1 data sources started 4.6.6
Filter initialization for all mission 2 data sources started 4.6.6
Filter initialization for all mission 1 data sources completed 4.6.6
Filter initialization for all mission 2 data sources completed 4.6.6

Powered flight change for all mission 1 coast filters started 4.6.7
Powered flight change for all mission 2 coast filters started 4.6.7
Powered flight change for all mission 1 coast filters completed 4.6.7
Powered flight change for all mission 2 coast filters completed 4.6.7

Panel test started 4.7.1
Panel test stopped 4.7.1

Buttons at intensity X 4.7.3

Graphics at intensity X 4.7.4

Panel terminals at intensity X 4.7.5

Message logging enabled 4.7.6
Message logging disabled 4.7.6

Sync error occurred on data source X 4.8.1
Sync error count cleared on data source X 4.8.1

CRC error occurred on data source X 4.8.2
CRC error count cleared on data source X 4.8.2

14

Sync lock obtained for data source X 4.8.3
Sync lost for data source X 4.8.3

3.2 Possible Data Messages to the Processor

Live mission title 4.2.3
Real mission title 4.2.3
Released software version number, title 4.2.4
Test load modules title 4.2.4
GMT 4.2.7
Countdown time for mission 1 4.2.8
Countdown time for mission 2 4.2.8
Liftoff time for mission 1 4.2.9
Liftoff time for mission 2 4.2.9
Software definable function designator 4.4.2
Data source name 4.5.1
Viewport 1 scale number for display group X 4.5.2.4
Viewport 2 scale number for display group X 4.5.2.5
Ethernet data buffer for data source X 4.9
Error message text

3.3 Possible Outputs from Processor to Data System

Start recording raw data for mission 1 4.1.1
Start recording raw data for mission 2 4.1.1
Stop recording raw data for mission 1 4.1.1
Stop recording raw data for mission 2 4.1.1

Start recording processed data for mission 1 4.1.2
Start recording processed data for mission 2 4.1.2
Stop recording processed data for mission 1 4.1.2
Stop recording processed data for mission 2 4.1.2

Start processing data for mission 1 4.1.3
Start processing data for mission 2 4.1.3
Stop processing data for mission 1 4.1.3
Stop processing data for mission 2 4.1.3

Liftoff detected for mission 1 4.2.9
Liftoff detected for mission 2 4.2.9

Reinitialize mission 1 4.4.1
Reinitialize mission 2 4.4.1

Software definable function X pushed 4.4.2

15

Make data source X unavailable 4.6.1
Make data source X available 4.6.1

Stop processing data source X 4.6.2
Start processing data source X 4.6.2

Remove data source X from the best select algorithm 4.6.3
Add data source X to the best select algorithm 4.6.3

Initialize filter for data source X 4.6.4

Change filter for data source X to coast 4.6.5
Change filter for data source X to powered flight 4.6.5

Initialize filter for all mission 1 data sources 4.6.6
Initialize filter for all mission 2 data sources 4.6.6

Change filter for all mission 1 data sources to powered flight 4.6.7
Change filter for all mission 2 data sources to powered flight 4.6.7

3.4 Possible Outputs from Processor to Graphics System

Add data source X, best or next best to display group 4.5.1
Remove data source X, best or next best to display group 4.5.1

Freeze alphanumerics on display group 4.5.2.1
Unfreeze alphanumerics on display group 4.5.2.1

Enable manual scaling on display group 4.5.2.2, 4.5.2.3
Disable manual scaling on display group 4.5.2.2, 4.5.2.3

Scale VP 1 of display group up to next predefined scale 4.5.2.2, 4.5.2.4
Scale VP 1 of display group down to next predefined scale 4.5.2.3, 4.5.2.4

Scale VP 2 of display group up to next predefined scale 4.5.2.2, 4.5.2.5
Scale VP 2 of display group down to next predefined scale 4.5.2.2, 4.5.2.5

Increase intensity of graphics display 4.7.4
Reduce intensity of graphics displays 4.7.4

4.0 Detailed Button Message Processing

This section gives the state table for each of the buttons processed by PR finite state machine.

16

4.1 RECORD RAW (2)

Light States:
0 = off = nothing
1 = white = not recording raw data N
2 = green = recording raw data N

Inputs:
a = raw data recording enabled in premission for mission X
b = raw data recording started for mission N
c = raw data recording stopped for mission N

Transitions:
0 ----- a ----- 1 0 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 1

4.2 RECORD PROC (2)

Light States:
0 = off = nothing
1 = white = not recording processed data N
2 = green = recording processed data N

Inputs:
a = processed data recording enabled in premission for mission N
b = processed data recording started for mission N
c = processed data recording stopped for mission N

Transitions:
0 ----- a ----- 1 0 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 1

4.3 MISSION START (2)

Light States:
0 = off = nothing
1 = white = mission X loaded
2 = green = data processing for mission X in progress
3 = red = data processing for mission X stopped

Inputs:
a = mission X loaded
b = mission X started processing data

17

c = mission X stopped processing data

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 3
3 ----- a ----- 13 ----- b ----- x3 ----- c ----- x

4.4 FIRE (8)

Light States:
0 = off = nothing / relay state
1 = control type / relay state
2 = fired / relay state

Inputs:
a = relay control manual, software, or both

note: save if new control type comes in while fired
b = fired relay note: save control type to restore if fire cleared
c = clear fire from unarmed relay

note: will only happen if circuit was unarmed
d = relay state indicator

 note: display only, doesn't really affect light state

Transitions:
0 ----- a ----- 10 ----- b ----- 20 ----- c ----- x
1 ----- a ----- 11 ----- b ----- 21 ----- c ----- x
2 ----- a ----- 22 ----- b ----- x2 ----- c ----- 1

??? Does the data system actually "fire" the relays or does the control system ??? Probably the
control system? What kind of hardware can be used to make this work???

4.5 TIME INIT

Light States:
0 = off = nothing
1 = white = mission X initialized
2 = green = initialization of mission X in progress

Inputs:
a = data system ready
b = data system initialization of mission X started
c = data system initialization of mission X completed

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x

18

1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 1

4.6 Data Select for SRC (12), Display Group (6)

Light States:
0 = off = nothing
1 = white data source X name = not selected for display group M
2 = green data source X name (ie. R3) = selected for display group M,

Inputs:
a = data source X (name) available
b = add data source X to display group M (increment number of sources)
b' = add data source X to display group M (at maximum number of sources)
c = remove data source X from display group M

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- b' ----- x 0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- b' ----- x 1 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- b' ----- x 2 ----- c ----- 1

4.7 BEST Select (2) for Display Group (6)

Light States:
0 = off = nothing
1 = white best for mission X name = not selected for display group M
2 = green best for mission X name = selected for display group M

Inputs:
a = best for mission X (name) available
b = add best for mission X to display group M (increment number of
sources)
b' = add best for mission X to display group M (at maximum number of
sources)
c = remove best for mission X from display group M

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- b' ----- x 0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- b' ----- x 1 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- b' ----- x 2 ----- c ----- 1

4.8 NBST Select (2) for Display Group (6)

Light States:
0 = off = nothing

19

1 = white next best for mission X name = not selected for display group M
2 = green next best for mission X name = selected for display group M

Inputs:
a = next best for mission X (name) available
b = add next best for mission X to display group M (increment number of
sources)
b' = add next best for mission X to display group M (at maximum number of

sources)
c = remove next best for mission X from display group M

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- b' ----- x 0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- b' ----- x 1 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- b' ----- x 2 ----- c ----- 1

4.9 ALPHA FREEZE (4)

Light States:
0 = off = display not available
1 = green = display active
2 = white = display frozen

Inputs:
a = display available
b = alphanumerics for display X frozen
c = alphanumerics for display X activated

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- x
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 1

4.10 VP(2) SCALE for Display Group (4)

Light States:
0 = off = nothing
1 = scale number

Inputs:
a = viewport X scale number for display group M

Transitions:
0 ----- a ----- 1
1 ----- a ----- 1

20

4.11 MANUAL UP for Display Group (4)

Light States:
0 = off = not manually scaling up
1 = green = manually scaling up

Inputs:
a = manual scaling up for display group X activated
b = manual scaling for display group X disabled
c = manual scaling down for display group X activated

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 01 ----- c ----- 0

4.12 MANUAL DOWN for Display Group (4)

Light States:
0 = off = not manually scaling down
1 = green = manually scaling down

Inputs:
a = manual scaling down for display group X activated
b = manual scaling for display group X disabled
c = manual scaling up for display group X activated

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 01 ----- c ----- 0

4.13 DATA CAP (12)

Light States:
0 = off = nothing
1 = green = data source X available
2 = white = data source X not available

Inputs:
a = data source X available to the RTSP
b = data source X not available to the RTSP

Transitions:
0 ----- a ----- 10 ----- b ----- x
1 ----- a ----- x 1 ----- b ----- x
2 ----- a ----- 12 ----- b ----- x

21

4.14 DATA PROC (12)

Light States:
0 = off = nothing
1 = green = data source X selected for processing, waiting for data
2 = green = received data source X
3 = blinking green = data source X dropped out
4 = white = data source X not selected for processing

Inputs:
a = data source X selected for processing
b = data source X not selected for processing
c = Ethernet data buffer for source X (Put mode on screen, not on button.)
d = heartbeat time interval reached

Transitions:
0 ----- a ----- 10 ----- b ----- 40 ----- c ----- x 0 ----- d ----- x
1 ----- a ----- x 1 ----- b ----- 41 ----- c ----- 21 ----- d ----- 3
2 ---- a ----- x 2 ----- b ----- 42 ----- c ----- x 2 ----- d ----- 1
3 ----- a ----- x 3 ----- b ----- 43 ----- c ----- 23 ----- d ----- x
4 ----- a ----- 1 4 ----- b ----- x 4 ----- c ----- x 4 ----- d ----- x

4.15 BEST SEL (12)

Light States:
0 = off = nothing
1 = red = data source X not in best select algorithm
2 = green = data source X in best select algorithm

Inputs:
a = data source X included in best select algorithm
b = data source X not included in best select algorithm
c = data source X selected for processing
d = data source X not selected for processing

Transitions:
0 ----- a ----- x 0 ----- b ----- x0 ----- c ----- 10 ----- d ----- x
1 ----- a ----- 21 ----- b ----- x1 ----- c ----- x 1 ----- d ----- 0
2 ----- a ----- 12 ----- b ----- 12 ----- c ----- x 2 ----- d ----- 0

Note: If data was in best select, then processing stopped, then restarted, the source will come up
not in best select. The data system will

4.16 FIL INIT (12)

22

Light States:
0 = off = nothing / data source X not being processed
1 = white = data source X being processed
2 = green = data source X filter initialization in progress

Inputs:
a = data source X selected for processing
b = data source X not selected for processing
c = filter initialization for data source X started
d = filter initialization for data source X completed

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x 0 ----- d ----- x
1 ---- a ----- x 1 ----- b ----- 01 ----- c ----- 21 ----- d ----- x
2 ----- a ----- 02 ----- b ----- x2 ----- c ----- x 2 ----- d ----- 1

4.17 PWRD FLT (12)

Light States:
0 = off = nothing
1 = green = data source X being processed with powered flight filter
2 = white = data source X being processed with coast flight filter

Inputs:
a = filter for data source X changed to powered flight
b = filter for data source X changed to coast
c = data source X selected for processing
d = data source X not selected for processing

Transitions:
0 ----- a ----- x 0 ----- b ----- x0 ----- c ----- 10 ----- d ----- x
1 ---- a ----- x 1 ----- b ----- 21 ----- c ----- x 1 ----- d ----- 0
2 ----- a ----- 12 ----- b ----- x2 ----- c ----- x 2 ----- d ----- 0

4.18 MA FIL INIT (2)

Light States:
0 = off = nothing
1 = white = filter initializations complete for mission X
2 = green = filter initializations started for mission X

Inputs:
a = filter initialization for all mission X data sources completed
b = filter initialization for all mission X data sources started

23

Transitions:
0 ----- a ----- 11 ----- b ----- 2
1 ----- a ----- x 1 ----- b ----- 2
2 ----- a ----- 12 ----- b ----- x

4.19 MA PWRD FLT (2)

Light States:
0 = off = nothing
1 = white = filter switches to powered flight complete for mission X
2 = green = filter switches to powered flight started for mission X

Inputs:
a = powered flight change for all mission X coast filters completed
b = powered flight change for all mission X coast filters started

Transitions:
0 ----- a ----- 11 ----- b ----- 2
1 ----- a ----- x 1 ----- b ----- 2
2 ----- a ----- 12 ----- b ----- x

4.20 PANEL TEST

Light States:
0 = off = panel test not active
1 = zero = panel test started
2 = panel test message number = panel test in progress

Inputs:
a = panel test started
b = panel test number
c = panel test stopped

Transitions:
0 ----- a ----- 10 ----- b ----- x0 ----- c ----- x
1 ----- a ----- x 1 ----- b ----- 21 ----- c ----- 0
2 ----- a ----- x 2 ----- b ----- x2 ----- c ----- 0

Note: To function in real-time, the panel test processing will increment the panel test message
number and generate a message on the input queue. Therefore other messages could come in and
be processed. Panel test would not affect the actual light states, and they would be restored
following the panel test. Pressing any button would end the panel test.

4.21 DIMMER

Light States:

24

0 = DIM = intensity will be adjusted down
1 = BRIGHT = intensity will be adjusted up

Inputs:
a = dimmer button pushed

Transitions:
0 ----- a ----- 1
1 ----- a ----- 2

4.22 PANEL, GRAPHS, or BUTTONS

Light States:
0 = off = nothing
1 = intensity number

Inputs:
a = panel, graphs, or buttons at intensity X

Transitions:
0 ----- a ----- 1
1 ----- a ----- 1

4.23 MSG LOG

Light States:
0 = message logging active
1 = message logging not active

Inputs:
a = message logging disabled
b = message logging enabled

Transitions:
0 ----- a ----- 10 ----- b ----- x
1 ----- a ----- x 1 ----- b ----- 1

4.24 SYNC ERROR (12)

Light States:
0 = zero = no sync errors
1 = error count number
2 = maximum error count

Inputs:
a = sync error occurred on data source X (increment count)

25

a' = sync error occurred on data source X (maximum count reached)
b = sync error count cleared on data source X

Transitions:
0 ----- a ----- 1 0 ----- a' ----- 2 0 ----- b ----- x
1 ----- a ----- 11 ----- a' ----- 2 1 ----- b ----- 0
2 ----- a ----- x 2 ----- a' ----- x 2 ----- b ----- 0

4.25 DATA ERROR (12)

Light States:
0 = zero = no data errors
1 = error count number
2 = maximum error count

Inputs:
a = CRC error occurred on data source X (increment count)
a' = CRC error occurred on data source X (maximum count reached)
b = CRC error count cleared on data source X

Transitions:
0 ----- a ----- 1 0 ----- a' ----- 2 0 ----- b ----- x
1 ----- a ----- 11 ----- a' ----- 2 1 ----- b ----- 0
2 ----- a ----- x 2 ----- a' ----- x 2 ----- b ----- 0

4.26 LOCK (12)

Light States:
0 = off = data for source X not sync locked
1 = green = data for source X sync locked

Inputs:
a = sync lock obtained for data source X
b = sync lost for data source X

Transitions:
0 ----- a ----- 10 ----- b ----- x
1 ----- a ----- x 1 ----- b ----- 0

4.27 SOFTWARE DEFINABLE FUNCTIONS

Display only of software defined text on buttons when active and when pushed.

26

5.0 Detailed Indicator Message Processing

This section gives the state table for each of the indicator lights and display fields processed by
PR finite state machine.

5.1 RTSP READY

Light States:
0 = off = nothing
1 = green = data system ready

Inputs:
a = data system ready
b = all missions stopped

Transitions:
0 ----- a ----- 10 ----- b ----- x
1 ----- a ----- x 1 ----- b ----- 0

5.2 GRAPHICS READY

Light States:
0 = off = nothing
1 = green = graphics system ready

Inputs:
a = graphics system ready

Transitions:
0 ----- a ----- 1
1 ----- a ----- x ??? does it ever get unready ???

5.3 SYSYEM MODE (2)

Light States:
0 = off = nothing
1 = green mission X title = live mission
2 = red mission X title = simulated mission

Inputs:
a = mission X title, live mode
b = mission X title, simulation mode

Transitions:
0 ----- a ----- 10 ----- b ----- 2

27

1 ----- a ----- x 1 ----- b ----- 2
2 ----- a ----- 12 ----- b ----- x

Note: A new mission can be loaded without halting the system.

5.4 SOFTWARE TEST

Light States:
0 = off = nothing
1 = green release version number = officially released software
2 = red test title = test load modules

Inputs:
a = release version number, title
b = test load module title

Transitions:
0 ----- a ----- 10 ----- b ----- 2
1 ----- a ----- x 1 ----- b ----- x
2 ----- a ----- x 2 ----- b ----- x

Note: Load modules cannot be changed without halting the system.

5.5 NO PANEL INPUT

Light States:
0 = off = nothing
1 = green = data system active, waiting for pulse signal
2 = green = data system active, received pulse signal
3 = blinking green = data system dropped out

Inputs:
a = data system active
b = heartbeat time interval elapsed

Transitions:
0 ----- a ----- 20 ----- b ----- x
1 ----- a ----- 21 ----- b ----- 3
2 ----- a ----- x 2 ----- b ----- 1
3 ----- a ----- 23 ----- b ----- x

5.6 NO GRAPHICS INPUT

Light States:
0 = off = nothing

28

1 = green = graphics system active, waiting for pulse signal
2 = green = graphics system active, received pulse signal
3 = blinking green = graphics system dropped out

Inputs:
a = graphics system active
b = heartbeat time interval elapsed

Transitions:
0 ----- a ----- 20 ----- b ----- x
1 ----- a ----- 21 ----- b ----- 3
2 ----- a ----- x 2 ----- b ----- 1
3 ----- a ----- 23 ----- b ----- x

5.7 GMT

Display only of GMT.

5.8 COUNTDOWN (2)

Display only of countdown time / mission elapsed time for each mission.

5.9 LIFTOFF (2)

Display only of liftoff time for each mission.

5.10 MESSAGES

Display only of error messages or data messages. There will probably be room for a rolling
display of multiple lines. It would be desirable to increment a count of a message if it already
appears on the screen.

5.11 PLASMA DISPLAYS

Data displays only. Mode will be displayed here instead of on the button itself. Care will be
taken to only write changed data in order to avoid flashing of the screen.

